Рус Eng Cn Перевести страницу на:  
Please select your language to translate the article


You can just close the window to don't translate
Библиотека
ваш профиль

Вернуться к содержанию

Вопросы безопасности
Правильная ссылка на статью:

Использование моделей на основе численной теории риска для поддержки принятия решений по противодействию деструктивным социальным технологиям

Тиханычев Олег Васильевич

ORCID: 0000-0003-4759-2931

кандидат технических наук

заместитель начальника отдела управления перспективных разработок, ГК "Техносерв"

111395, Россия, г. Москва, ул. Юности, 13

Tikhanychev Oleg Vasilyevich

PhD in Technical Science

Deputy Head of Department in the Office of Advanced Development, Technoserv Group 

111395, Russia, Moscow, Yunosti str., 13

tow65@yandex.ru
Другие публикации этого автора
 

 

DOI:

10.25136/2409-7543.2020.1.30628

Дата направления статьи в редакцию:

26-08-2019


Дата публикации:

17-03-2020


Аннотация: Объектом исследования является процесс межгосударственного противоборства, основанного на методах и технологиях «мягкой силы». Предмет исследования – моделирование личных рисков участников социально-политических процессов, обеспечивающие противодействие социальным технологиям дестабилизации общества. Обзорная статья посвящена противодействию деструктивным технологиям, используемых при межгосударственном противоборстве в рамках «мягкой силы». Для количественного обоснования содержания методов противодействия предложено использовать геометрическую интерпретацию вероятностно-стоимостной модели рисков, используемую в технике и экономике. И, на подсознательном уровне, применяемой при принятии решений каждым отдельным индивидом. В статье использованы общенаучные методы анализа и синтеза. Проведенная на основе анализа формализация предметной области позволила описать, в общем виде, модель рисков при принятии конкретным индивидуумом решений на участие в протестных действиях. С использованием указанных методов проведен анализ поведенческих составляющих модели, а также возможность воздействия на поведение потенциальных участников протестов через модификацию этих составляющих. Сделаны выводы о возможности осуществления некоторых вариантов такого воздействия. Таким образом, в статье сформулирована постановка задачи по разработке модели учёта рисков для оценки методов противодействия технологиям «мягкой силы»


Ключевые слова:

межгосударственное противоборство, непрямые методы противоборства, мягкая сила, методы социальной инженерии, математическое моделирование, оценка рисков, скрытая идентификация, модель рисков, количественное выражение риска, применение теории рисков

Abstract: The object of this research is the process of intergovernmental opposition based on the methods and techniques of “soft power”. The subject of this research is the modeling of personal risks of the participants of sociopolitical processes that ensure counteraction to social destabilization technologies. The article is dedicated to counteraction of destructive technologies implemented in intergovernmental opposition within the framework of “soft power”. For quantitative substantiation of the content of counteraction methods, it is proposed to apply geometrical interpretation of probability-value risk model used in technology and economics, as well as in decision-making on the subconscious level by each individual. The conducted formalization of subject area allowed describing the risk model of making decisions by a specific individual regarding the participation in protect actions. Using the methods of analysis and synthesis, the author examines the behavioral components of the model, as well as its possible effect on the behavior of potential participants of protests through modification of these components. The conclusions are made on possibility of realization of some variations of such effect. Thus, the article targets the development of model of addressing the risks to evaluate the methods of countering “soft power” techniques.


Keywords:

inter-state confrontation, indirect confrontation methods, soft power, social engineering methods, mathematical modeling, risk assessment, hidden identification, risk model, quantitative expression of risk, application of risk theory

Введение

Несмотря на непрерывное развитие вооружения и совершенствование способов его применения, в рамках межгосударственного противостояния в последнее время наблюдается смещение акцентов от прямого вооруженного противоборства к использованию методов «гибридных» действий, «прокси-войн» (proxy war) и применению «мягкой силы» (soft power). Примером последнего может служить применение деструктивных социальных технологий так называемых «цветных революций». И любое государство, пытающееся защитить себя, должно обладать возможностями противодействия подобным методам противоборства.

Но, как показывает практика, в извечном противодействии «меча и щита», в настоящее время выигрывает нападение, как часто случается при изобретении нового оружия: сейчас разработано значительное количество методов дестабилизации социальной системы государства-противника [2-4], и намного меньшее количество методов защиты [5].

Основная проблема в данном аспекте представляется в том, что в настоящее время организация «цветных» и «цветочных» революций и противодействие деструктивным воздействиям решается на уровне интуитивном, логико-аналитическом, когда точные математические методы и реализующие их современные информационные технологии используются преимущественно при обработке статистики и визуализации информации [6-8]. Итог такого состояния: абсолютно непредсказуемые результаты планируемых действий, даже осуществляемых в, казалось бы, похожих условиях – от относительно бескровной «жасминовой» революции 2011 года в Тунисе, до кровавой и бессмысленной резни в соседней с ним Ливии. Анализ показывает, что для обеспечения организации эффективных действий необходимо в процессе выработки решений иметь возможность получения объективных оценок последствий их реализации, основанных на математических методах прогнозирования, например, моделировании. Учитывая это, предлагается сформулировать постановку задачи разработки модели, которая, пусть и в общем виде, позволит оценивать риски применения социальных технологий дестабилизации и эффективность мер противодействия им.

1.Модель прогнозирования поведения на основе теории рисков

Итак, прогнозирование последствий принимаемых решений является неотъемлемой частью цикла управления. В настоящее время существует и используется в практике управления достаточно обширный перечень методов прогнозирования. Но большинство из них достаточно сложны для реализации при прогнозировании поведения таких систем, как человеческое общество. Дело даже не в масштабе, крупные распределённые модели больших систем давно и успешно реализуются, как показывает опыт проекта LES (Living Earth Simulator). Проблема совсем в другом – в чрезвычайно низкой степени формализации моделируемых процессов [9,10].

В итоге, для прогнозирования последствий реализации социальных технологий межгосударственного противоборства используется лишь небольшая часть существующих математических методов. В первую очередь это экспертные методы, основанные на субъективном подходе, и упрощённые логико-вероятностные модели.

Один из возможных подходов к разрешению подобной ситуации – использование укрупнённых математических моделей, реализующих только основные составляющие моделируемого процесса.

Анализ особенностей предметной области показывает, что математическое описание процессов, реализуемых в рамках организации разнообразных «майданов», служащих основой деструктивных социальных действий, может быть получено на основе оценки основных составляющих информационного противоборства и силовых протестных действий, а именно – процессов выбора личной альтернативы поведения каждым участвующим в процессе индивидуумом, лавирующим между ожидаемой полезностью результата с одной стороны, возможными потерями и затратами на его достижение с другой. Для формализованного описания подобного подхода, как показывает практика работы в смежных областях, может успешно использоваться модель на основе теории рисков.

Эмпирически, эффективность предлагаемого математического аппарата подтверждается тем, что похожие модели уже реализованы в виде программных средств коммерческого назначения: в системе оценки банковских рисков CAPM (Capital Asset Pricing Model) и других аналогичных системах, в компонентах автоматизированных систем управления рисками ERM (Enterprise risk management). Практика подтверждает эффективность их применения [11,12].

Основными преимуществами подобной модели можно считать:

- относительную простоту и апробированность математического аппарата;

- простоту выделения участвующих в процессе групп агентов, например, активные участники протестов, сочувствующие, равнодушные и противодействующие группы;

- возможность оперирования усреднёнными параметрами оценок для выделенных групп взаимодействующих агентов (целевых групп).

В обобщённой форме, в контексте современных социологических и социально-психологических теорий риска: натуралистических, функциональных или институциональных, модель строится относительно рассуждений типового моделируемого актора о соотношении стоимости и полезности результата, основанных на объективном и субъективном влиянии фактора рисков при принятии решения [13]. Определяются эти факторы тем, что любой человек, принимая решение, логически, а при возможности и численно, оценивает риск последствий своих действий, как в случае успеха, так и неуспешного окончания. И, хотя некоторые исследователи предполагают калькулируемость риска только в рамках натуралистической модели [14], на самом деле, основываясь на известной схеме «единичного акта» Парсона [15,16], можно утверждать, что оценки формируются в любом случае. Если не численные, в явном виде, то хотя бы на качественном уровне. А последние тоже определяются на основе вычислений, пусть даже подсознательно, в форме сравнительных логических операций.

Для получения прогнозов указанных оценок предлагается использовать математическую модель на основе аппарата теории рисков [17-19]. Согласно положениям этой теории, при принятии решения, каждый индивид руководствуется степенью риска, возникающего при выполнении действия. При этом он, чаще всего на подсознательном уровне, использует математический аппарат минимизации ошибок, которые в теории вероятностей делятся на ошибки первого и второго рода [20,21]. С использованием подобной эвентуальной модели, каждый конкретный индивид пытается минимизировать величину ожидаемого риска R по двум направлениям: снижение угрозы потери возможной «прибыли» (ошибки первого рода) и минимизации вероятных «убытков» (ошибки второго рода). Разумеется, целенаправленная деятельность индивида не описывается каким-то одним событием, я являет собой череду событий разной сложности. Но для событий, объединённых единой целью можно сформулировать единую стратегию, реализацию которой также можно описать с применением модели на основе теории рисков.

В формальном выражении, данная модель описывается следующей функцией:

R = С12 (1 - P(H12)) + C21P(H21) → min.

Понятия P(H21), P(H12), C21, C12 в модели рисков могут меняться в зависимости от условий решаемой задачи. В рамках описания модели социальных рисков, они будут принимать следующий физический смысл:

С12 – ожидаемая «полезная стоимость» результата предпринимаемых действий;

Р(Н12) – вероятность того, что стратегия действий выбрана правильно и событие будет завершено с положительным для рискующего результатом;

С21 – потери, возникающие в результате срыва или необоснованного принятия решения на действие;

Р(Н21) – вероятность неверного выбора стратегии, приводящей к отрицательному результату действий.

Приведённая зависимость отражает оценку рисков в логической форме. Для получения численных оценок необходимо описать зависимость в форме математической модели. В наиболее часто встречающейся ситуации, когда решения Р(Н12) и Р(Н21) несовместны и составляют полную группу событий, получаем, что Р(Н12) = 1 - P(H21). Тогда:

R = C12P(H21) + C21P(H21).

В графическом виде вариант модели рисков, сформированной относительно вероятности неуспеха Р(Н21) для случая полной группы событий, может быть описан так, как представлено на рисунке 1.

Подобное графоаналитическое представление процесса принятия решения может быть достаточно просто реализовано в форме математической модели и обеспечивает наглядное представление тенденций формирования оценок рисков в зависимости от изменения влияющих на них факторов.

Рис.1. Графическая интерпретация моделирования оценки рисков

Так, например, повышение стоимости С21 «задирает» в модели прямую рисков вверх (рис.1), повышая ожидаемое суммарное значение риска R0 до уровня R1. Изменение вероятностей Р(Н12) или Р(Н21) сдвигает точку принятия решения на графике влево (P-) или вправо (P+), меняя относительное значение риска до R2 или R3 соответственно.

2. Основные факторы противодействия деструктивным технологиям, учитываемые в модели

Применение подобных моделей позволяет использовать аппарат теории рисков для оценки возможности регулирования социальных процессов. С учётом того, что вероятности Р(Н12) и Р(Н21) в большинстве ситуаций составляют полную группу событий, для управления обществом через риски или их ожидания, как очевидно из модели (рис.1), может быть использовано несколько основных вариантов:

- повышение неотвратимости наказания за счёт увеличения вероятности Р(Н21) при одновременном, что не менее важно, снижении вероятности Р(Н12);

- ужесточение наказания за противоправные действия С21.

- снижение вероятности получения «прибыли» при осуществлении противоправных действий Р(Н12) и снижение ожидаемой стоимости (полезности), получаемой в результате успеха С12 до значения, не превышающего затрат на её достижение.

Анализ этих подходов показывает, что в современном гуманизированном обществе, основным решением может быть именно повышение неотвратимости наказания и снижение ожидаемой «прибыли» от противоправных действий. Именно для выработки рекомендаций по реализации этих мер может быть использована численная модель рисков.

Качество любой модели, кроме обязательной адекватности используемого математического аппарата прогнозируемой системе или процессу, определяется также интерпретируемостью результатов и возможностью получения исходных данных.

Возможность интерпретации результатов для геометрических моделей обеспечивается самой их структурой, наглядностью представления данных в графическом виде (рисунок 1).

Возможность получения исходных данных для моделирования может быть обеспечена за счёт решения ряда взаимоувязанных задач:

- разделение населения на группы по признакам поведения относительно отношения к протестам;

- вычисление конкретных значений показателей стоимостей и вероятностей;

- учёт особенностей моделирования различных групп населения.

Важность этих задач трудно переоценить, учитывая, что одной из основных проблем использования математических моделей в процессе поддержки принятия решений является оперативное обеспечение их актуальными исходными данными [22].

Первая задача с точки зрения построения модели является самой простой: высокая точность разделения не требуется, а с необходимой для моделирования точностью процентное отношение групп может быть получено на основании результатов обработки статистики и учёта общественного мнения. Дифференциация населения по группам позволяет реализовать избирательные методы работы с ними, которые, по определению, эффективнее нецелевых. Как показывает анализ опыта всевозможных «цветных» и «цветочных» революций, работать необходимо, в первую очередь, с активными слоями населения, которые являются движущей силой социальных процессов. Соответственно, именно эту группу и необходимо в первую очередь изучать в рамках модели риска. Остальные группы служат «фоном» модели, обеспечивающим работу с целевыми группами.

Вторая задача может быть решена различными методами, наиболее простым и надёжным из которых представляется применение экспертных оценок, формализуемых с использованием количественно-качественной шкалы. Например, с использованием Д-функции желательности Харрингтона, которая была разработана на основании результатов наблюдений за реальными решениями экспериментаторов и обладает такими свойствами как непрерывность, монотонность и гладкость. Кроме того, эта функция хорошо передает тот факт, что в областях желательностей, близких к 0 и 1, «чувствительность» ее существенно ниже, чем в средней зоне. В этом случае Д-функции желательности Харрингтона может быть задана уравнением:

d = exp[-exp(-y)].

Стандартные отметки на шкале желательности приведены в таблице рисунока 2.

Таким образом, если принять за граничные значения критериев достижения цели значения по оси Y: 0,8; 0,63; 0,37; 0,2 округлив данные значения до 0,8; 0,6; 0,4; 0,2, а по оси X указать вербальные значения степени достижения цели, получаем искомый набор оценок (рисунок 2).

Рис.2. Функция достаточности - желательности Харрингтона и соотношение вербальных и числовых значений критериев достижения цели

Заблаговременное получение экспертных оценок для модели рисков позволит провести все необходимые мероприятия для обеспечения их точности: формирование представительной выборки экспертов, проверку согласованности и отбраковку аномальных результатов и т.п.

Аналогичным способом могут быть сформированы и стоимостные оценки рисков.

Третья задача осложняется тем, что при описании модели и интерпретации результатов моделирования необходимо учесть ряд специфических факторов, характерных для течения социальных процессов в обществе. В рамках этой проблемы, следует учитывать разные цели воздействия на группы населения, например:

- для активной части протестующих необходимо принуждение к отказу от целевых действий;

- сомневающихся убедить не поддерживать протесты;

- пассивное большинство необходимо убеждать в стабильности власти и правильности действий силовиков. Одновременно показывая, что действия в неправильном направлении могут иметь неприятные последствия.

В рамках таких действий, моделируемые факторы могут оказывать различное влияние на разные группы населения, но их формальное описание в модели будет аналогичным. В то же время, различие может возникать при интерпретации результатов моделирования, что определяется разными целевыми установками групп – участников событий. Соответственно, различия в интерпретации требуют учёта в мерах по реализации результатов прогнозирования.

Во-первых, при реализации указанных мер следует учесть, что величина личных рисков оценивается каждым индивидуумом приоритетно. А все риски для государства и общества – через их преломление на угрозы для себя и своей семьи. Последнее определяется тем, что большинство людей редко в процессе оценки рисков ориентируются на дальнюю перспективу, так как прогнозировать на длительный период в условиях постоянных изменений обстановки проблематично. Чаще они ориентируются на риски в ближайшем будущем по времени и в пространстве. Исходя из этого, можно сделать вывод о том, что необходимо точечное «адресное» воздействие на краткосрочные интересы каждого человека, готового к протестным действиям. А в первую очередь – на наиболее активных членов протестных групп и их руководство.

При подготовке исходных данных для моделирования следует учесть один важный фактор: в многочисленных руководствах по организации «ненасильственных действий» достаточно много места уделяется обеспечению безопасности их участников. Не из заботы о них, разумеется, а для сохранения протестного потенциала. Основные рекомендации – скрывать своё участие и принадлежность к данным процессам. Как при общении в сетях, так и физически, при участии в акциях протеста. Более того, как показал опыт организации протестных действий в Барселоне в 2019 году, их участники для коммуникации использовали не дискредитировавшие себя сотрудничеством с силами правопорядка социальные сети, а средства собственной разработки, доступ к которым обеспечивался через систему «рекомендаций» и собственные алгоритмы шифрования. Разумеется, подобные действия будут создавать проблемы при реализации мер, разрабатываемых с использованием предлагаемой модели противодействия, снижая вероятность Р(Н12), их необходимо учитывать и парировать [23]. С учётом того, что борьба переходит в область высоких технологий – парировать так же технологично.

Обеспечить парирование противодействия идентификации, то есть, в терминах предлагаемой модели повышение вероятности Р(Н21), возможно через выполнение ряда технологических мер, в первую очередь – по идентификации каждого из участников протестного процесса.

Напомним, что по типу используемой информации идентификация делится на:

- идентификацию с ключом;