Рус Eng Cn Перевести страницу на:  
Please select your language to translate the article


You can just close the window to don't translate
Библиотека
ваш профиль

Вернуться к содержанию

Кибернетика и программирование
Правильная ссылка на статью:

Разработка методологии построения систем управления сложными техническими комплексами при помощи методов математической теории категорий

Федосовский Михаил Евгеньевич

кандидат технических наук

заведующий кафедрой, ФГАОУ ВО "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики"

197101, Россия, г. Санкт-Петербург, Кронверкский проспект, 49

Fedosovsky Michail Evgen'evich

PhD in Technical Science

Head of the Systems and Technologies of Technogenic Safety Department of the St. Petersburg National Research University of Information Technologies, Mechanics and Optics

197101, Russia, g. Saint Petersburg, ul. Kronverkskii Prospekt, 49

27122009-2@mail.ru
Другие публикации этого автора
 

 

DOI:

10.25136/2644-5522.2018.5.27561

Дата направления статьи в редакцию:

01-10-2018


Дата публикации:

25-11-2018


Аннотация: Объектом исследования в данной работе являются системы управления сложными техническими комплексами. Предметом исследования является методология разработки систем управления сложными техническими комплексами. Разработанная методология создания системы управления сложными техническими комплексами базируется на идее генерации последовательности отображений концептуальных моделей в инфологические модели и, далее, в даталогические модели. Ранее автором представлялось концептуальное и инфологическое моделирование и соответствующие этим уровням математические модели, а также отношения между ними, то есть математические категории. Разработанная методология создания системы управления сложными техническими комплексами базируется методах теории математических категорий. Представленные категории при даталогическом представлении имеют два уровня абстракции. Основные выводы проведенного исследования: 1. Унифицированное описание семейств неоднородных математических моделей, отражающих различный уровень абстрагирования (обобщения) на этапе даталогического представления предметных задач, делает возможным создание формулировок для общего определения моделей с описанием их структуры. 2. Разработанный метод даталогического моделирования предоставляет все возможности для обеспечения настройки на конкретных программно-технических средствах реализации системы управления сложными техническими комплексами.


Ключевые слова:

математическая теория категорий, математическая модель, абстрактные уровни, концептуальное моделирование, инфологическое моделирование, даталогическое моделирование, системы управления, автоматизированное проектирование, отображение, технический комплекс

Abstract: The object of research in this work are the control systems of complex technical complexes. The subject of research is the methodology for developing control systems for complex technical complexes. The developed methodology for creating a control system for complex technical complexes is based on the idea of generating a sequence of mappings of conceptual models into infological models and, further, into datalogical models. Previously, the author presented conceptual and infological modeling and the mathematical models corresponding to these levels, as well as the relations between them, that is, mathematical categories. The developed methodology for creating a control system for complex technical complexes is based on the methods of the theory of mathematical categories. The categories presented in the datalogical representation have two levels of abstraction. The main findings of the study:1. A unified description of families of inhomogeneous mathematical models reflecting a different level of abstraction (generalization) at the stage of the datalogical presentation of subject problems makes it possible to create formulations for the general definition of models with a description of their structure.2. The developed method of datalogical modeling provides all the possibilities for providing customization on specific software and hardware tools for implementing a control system for complex technical complexes.


Keywords:

mathematical category theory, mathematical model, abstract levels, conceptual modeling, infological modeling, datalogical modeling, control systems, computer-aided design, display, technical complex

Введение

Современные информационные технологии являются базой в процессе многочисленных научных исследований по разработкам и реализациям различных методов для решения задач проектирования систем управления (СУ) сложными техническими комплексами (СТК). Разработанная методология создания СУ СТК базируется на идее генерации последовательности отображений кон­цеп­ту­аль­ных моделей в инфологические модели и, далее в да­та­ло­ги­чес­кие модели. Концептуальные модели имеют три уровня абстракции – абстрактный, объектный и конкретный. В [1-6] представлено концептуальное и инфологическое моделирование и соответствующие этим уровням математические модели и отношения между ними, то есть математические категории. В этом случае математические категории могут служить основой при создании единой семантической базы [7]. В данной работе рассматривается этап даталогического моделирования.

Разработка моделей для этапа даталогического моделирования

Обнаруженные в процессе ис­сле­до­ва­ний закономерности, научная основа которых базируется на фундаментальных тео­ре­ти­ческих по­ло­же­ниях, появляются в процессах создания математических моделей при даталогическом представлении. Кроме того, при формулировке методологических способов объек­ти­ви­ро­ва­ния систем знаний, а также при формально-языковом мо­де­ли­ро­ва­нии проектно-конструкторских задач, данные законы обладают свойством от­обра­­жения ре­гу­лярности при создании зна­­­ко­­вых конст­­рукций и баз знаний [8,9].

Проведенные исследования по даталогическому моделирова­нию, ориентированное на конкретные про­грам­мно-тех­ни­ческие средства, являющееся основой при представлении проктно-конструкторских задач, позволили ха­рак­те­ри­зо­вать мно­жество современных технологий разработки СУ СТК на базе трех важнейших условий:

– организация модельного представления (логическая, фи­зи­чес­кая);

– организация систем автоматизированного проектирования СУ СТК (рас­пре­де­лен­ная, централизованная);

– компоненты программного продукта (доступ, обработка, информационные).

Формально даталогическое представление для n – ой пред­мет­ной за­дачи можно записать так:

Д(n) = (Д2(n), {Д3(n)}),

где Д2(n) – даталогическа модель n – ой предметной задачи на объектном уровне;

{Д3(n)} = (Д31(n), Д32(n), …, Д3t(n)) – даталогическая модель для t – ой реализации n – ой предметной за­да­чи на конкрет­ном уровне.

Даталогическую модель на i – том уров­не абст­­рагирования формально можно представить следующим образом:

Дi = (Ob_Дi, Mor_Дi),

где Ob_Д2={md2,l(p,j)} – представляет из себя множество структурных элементов;

Ob_Д3={md2,i(p,j,s)} – представляет из себя множество представителей структурных элементов;

Mor_Дi = (S_Дi D_Дi F_Дi V_Дi)– множество отношений на объек­­­тах;

S_Дi = (B_Di, P_Di, BP_Di) - статические отношения на струк­­тур­ных элементах;

B_Di Ob_Дi ×Ob_Дi – бинарные отношения на Ob_Дi;

B_D2 = {md2,i(p,l), md2,j(q,s)}; B_D3 = {md3,i(p,l,s), md3,j(q,r,t)};

Pi – схемы на Ob_Дi;

P_D2 = {pd2(i,j,p,q)}=({md2,i(v,i), md2,j(w,s)},{md2,p(r,t), md2,q(u,g)});

P_D3 = {pd3(i,j,p,q,r,s)}=({md3,i(v,i,h), md3,j(w,s,a)},{md3,p(r,t,b), md3,q(u,g,c)});

BP_Di P_Дi ×P_Дi – бинарные отношения на P_Дi;

BP_D2 = {pd2(i,j,p,l), md2(v,u,s,r)}; BP_D3 = {md3(i,,j,p,q,r,s), md3(a,b,c,d,g,h)};

D_Дi = (L_Дi,BL_Дi) – динамических отношения на струк­тур­ных элементах;

L_Дi – доступы к структурным элементам;

L_Д2 = {ld2,i(p,l)} – множество типов доступов;

L_Д3 = {ld3,i(p,l,g)} – множество представителей типов доступов;

B_Li L_Дi ×L_Дi – бинарные отношения на L_Дi;

BL_Д2 = {ld2,i(p,l), ld2,i(r,s)}; BL_Д3 = {ld3,i(p,l,g), ld3,j(r,s,h)};

F_Дi = (W_Дi,BW_Дi) – функциональные отношения на струк­тур­ных элементах;

W_Дi – манипуляции;

W_Д2 = {wd2,i(p,l)} – типы манипуляций;

W_Д3 = {wd3,i(p,l,g)} – представители типов манипуляций;

BW_Di W_Дi ×W_Дi – бинарные отношения на W_Дi;

BW_Д2 = {wd2,i(p,l), wd2,j(r,s)}; BW_Д3 = {wd3,i(p,l,g), wd3,j(r,s,h)};

V_Дi = (G_Дi,BG_Дi) – виртуальные отношения;

G_Дi – вариации ви­зу­ализации доступов к данным, представленные как форм-отчеты и ви­зу­а­ли­за­ции процесса обработки данных представленная как форм-меню;

G_Д2 = {gd2,i(p)} – множество вариаций ви­зу­ализации;

G_Д3 = {gd3,i(p,q)} – множество представителей вариантов ви­зу­ализации;

BG_Di G_Дi ×G_Дi – бинарные отношения на G_Дi;

BG_Д2 = { gd2,i(p), gd2,j(q)}; BG_Д3 = {gd3,i(p,g), gd3,j(r,s)}.

При помощи состава и структуры при даталогическом представлении предметных задач происходит от­ра­жение ло­ги­ческой организации автоматизируемых задач на различных уров­нях абстра­ги­ро­вания. Следует отметить необходимость учета составляющих даталогических моделей – ста­ти­чес­кой, динамической, функциональной и виртуальной. Это позволит достичь (с заданной точностью) со­пря­женность инфологического представления предметных задач с даталогическим представлением предметных задач [3]. Закономерности отображений инфологических моделей в даталогические учитывают идентичность применения абстракций в процессе создания связей у моделей на одинаковых уров­нях абст­ракции. При наличии формального описания инфологических и даталогических пред­став­­­ле­ний становится возможным учет и систематизация всевозможных со­от­­но­ше­ний и свя­зей между компонентами и элементами, существующими у конкретной математической модели, так и всевозможных со­от­­но­ше­ний и свя­зей, существующими у математических моделей на раз­ных уровнях абстрагирования для всех пред­став­­ле­ний. Кроме того, в процессе модели­ро­ва­ния проектно-конструкторских задач, это формальное описание служит базой для дальнейшего методического вы­яв­ле­ния и описания требуемых со­от­­но­ше­ний и свя­зей.

Существование формальных взаимосвязей между инфологическими и даталогическими моделями предоставило следующие возможности:

– в случае наличия вербального знакового пред­став­ле­ния создавать ограничения для множеств всевоз­мож­ных зависимостей и связей;

– сделать формализованное знаковое представление пред­мет­ной задачи полным при помощи применения к нему семантического дополнения.

Создание для автоматизируемых проектно-конструкторских задач в процессе разработки СУ СТК метода отображения инфологических моделей в даталогические происходило в направлениях:

– вскрытия оснований;

– обнаружения структуры отображений;

– доказательство закономерностей отображений.

Формулирование закономерностей отображений мо­де­­лей имеет следующую базу:

– унифицированный математический аппарат создания математических моделей;

– унифицированная структура закономерностей при формировании математических моделей;

– наличие законов цикличности.

Вычислительные эксперименты проводились при помощи системы MATLAB [10-13].

Применение разработанной методологии для проектирования систем управления транспортно-технологическими комплексами перегрузки ядерного топлива c учетом требований по безопасности

Актуальность разработки новых СУ транспортно-технологическими комплексами перегрузки ядерного топлива вызвана требованием модернизации оборудования на всех Российских АЭС [14-19] Это связано с тем, что ранее разработанные СУ перегрузкой ядерного топлива имеют объем защит и блокировок, рассчитанный на ручной режим работы. При этом, ответственность за безопасность перегрузки несет, в основном, оператор перегрузочного комплекса [20]. Поэтому разработка теоретических и практических положений, связанных с повышением безопасности технологических процессов перегрузки ядерного топлива очень востребованы.

Одним из основных требований к модернизированной СУ перегрузки ядерного топлива является требование возложения главенствующей роли в обеспечении ядерной и радиационной безопасности процесса перегрузки в автоматическом режиме работы на саму СУ.

Согласно разработанной методологии, на этапе ОКП [1,2,4] был проведен анализ традиционных процессов решения задач проектирования СУ технологического процесса перегрузки ядерного топлива с учетом требований по безопасности СУ и всего процесса в целом согласно регламентирующим документам в части, касающейся технологического процесса перегрузки [20].

Исходной ин­­формацией на данном этапе являются сведения, полученные из и до­­ку­мен­таль­ных ис­точников и экспертов в данной предметной области.

Процесс моделирования технологического процесса перегрузки активной зоны основан на использовании библиотеки типовых моделей технологических циклов, операций, интервалов безопасности, комплектов оборудования, отдельных нарушений, защит и блокировок.

Основные разделы библиотеки типовых моделей следующие:

- превышение допустимых воздействий (ПДВ) на кампании перегрузки;

– ПДВ на технологических циклах;

– ПДВ на технологических операциях;

– ПДВ на интервалах безопасности;

– нарушения технологического процесса (НТП) на интервалах безопасности;

– Модели распространения НТП;

– Модели преобразования НТП;

– Модели инициирующих НТП;

– Модели отказов защит;

– Модели отказов блокировок;

– Прочие модели.

Это соответствует моделям ОИПi, i=1,2,3 [3].

Некоторые результаты, ролученные на данном этапе, представлены в Таблице 1( критерии безопасности).

Таблица 1

Критерии безопасности

Вид воздействия

Критерий безопасности –

превышение допустимых воздействий (ПДВ)