Рус Eng Cn Перевести страницу на:  
Please select your language to translate the article


You can just close the window to don't translate
Библиотека
ваш профиль

Вернуться к содержанию

Кибернетика и программирование
Правильная ссылка на статью:

Автоматная модель представления нелинейных псевдослучайных последовательностей с функцией выхода на основе системы инъективных преобразований

Захаров Вячеслав Михайлович

доктор технических наук

профессор, кафедра Компьютерных систем, Казанский Национальный Исследовательский Технический Университет им. А. Н. Туполева – КАИ

420111, Россия, Татарстан область, г. Казань, ул. К.маркса, 10

Zakharov Vyacheslav Mikhailovich

Doctor of Technical Science

professor of the Department of Computer Systems at Kazan National Research Technical University named after A.N. Tupolev

420111, Russia, Tatarstan, Kazan, Karl Marx' str., 10

gilvv@mail.ru
Песошин Валерий Андреевич

доктор технических наук

профессор, кафедра Компьютерных систем, Казанский Национальный Исследовательский Технический Университет им. А. Н. Туполева – КАИ

420111, Россия, республика Татарстан, г. Казань, ул. К.маркса, 10

Pesoshin Valerii Andreevich

Doctor of Technical Science

professor of the Department of Computer Systems at Kazan National Research Technical University named after A.N. Tupolev

420111, Russia, Tatarstan, Kazan, Karl Marx' str., 10

pesoshin-kai@mail.ru
Шалагин Сергей Викторович

доктор технических наук

профессор, кафедра Компьютерных систем, Казанский Национальный Исследовательский Технический Университет им. А. Н. Туполева – КАИ

420111, Россия, республика Татарстан, г. Казань, ул. К.маркса, 10

Shalagin Sergei Viktorovich

Doctor of Technical Science

professor of the Department of Computer Systems at Kazan National Research Technical University named after A.N. Tupolev

420111, Russia, Tatarstan, Kazan', Karl Marx' str., 10

sshalagin@mail.ru
Эминов Булат Фаридович

кандидат физико-математических наук

доцент, кафедра Компьютерных систем, Казанский Национальный Исследовательский Технический Университет им. А. Н. Туполева – КАИ

420111, Россия, республика Татарстан, г. Казань, ул. К.маркса, 10

Eminov Bulat Faridovich

PhD in Physics and Mathematics

associate professor of the Department of Computer Systems at Kazan National Research Technical University named after A.N. Tupolev

420111, Russia, Republic of Tatarstan, Kazan', Karl Marx' str., 10

bulfami@mail.ru

DOI:

10.25136/2644-5522.2017.5.23065

Дата направления статьи в редакцию:

19-05-2017


Дата публикации:

30-10-2017


Аннотация: Предметом исследования являются методы усложнения аналитического строения псевдослучайных последовательностей путем применении к элементам заданной исходной псевдослучайной последовательности дополнительного преобразования в виде нелинейной внешней логики - нелинейной функции усложнения. Целью работы является определение и алгоритмическое построение математической модели нелинейной функции усложнения, представляемой на основе модулярной операции возведения в степень по простому модулю, позволяющей получать нелинейные псевдослучайные последовательности, обладающие на заданном максимальном периоде статистическими свойствами, приближающимися к свойствам случайной равновероятной последовательности. Для представления модели используется формализм теории автоматов, теорий конечного поля, модулярной арифметики и простых чисел. Предложена автоматная модель формирования нелинейных псевдослучайных последовательностей с заданными периодами L = 2^n-1 и L = 2^n, n >1, отличающаяся функцией выхода, представленной в виде нелинейной функции усложнения на основе системы нелинейных преобразований по модулям, принадлежащих к множеству простых чисел Ферма. Доказано, что функция выхода автомата, представляется как инъективная функция, выполняющая на основе нелинейных модулярных операций на периоде L = 2^n перестановку элементов последовательности де-Брейна. Показано, что алгоритмическая модель функции выхода автомата позволяет менять структуру нелинейных последовательностей путем перестановки по псевдослучайному закону значений первообразных корней по модулю числа Ферма. Размер ансамбля нелинейных последовательностей, формируемых нелинейной функцией усложнения, зависит от числа первообразных корней и определяется нижней оценкой вида О(2^n), n>1.


Ключевые слова:

псевдослучайная последовательность, автоматная модель, функция усложнения, инъективное преобразование, последовательность де-Брейна, М-последовательность, простые числа Ферма, нелинейная модулярная операция, первообразные корни, ансамбль последовательностей

УДК:

681.3

Abstract: The subject of the research is the methods of complicating the analytical structure of pseudorandom sequences by applying additional mapping of nonlinear external logic, in particular, nonlinear complication function, to elements fo initial pseudorandom sequence. The purpose of the research is to define and develop an algorithm of a mathematical model of nonlinear complication function presented on the basis of the modular operation of the simple modul exponentiation. This allows to obtain nonlinear pseudorandom sequences that have statistical properties close to the properties of a random sequence at the set maximum period. To present the model, the authors have used the formalism of the automation theory, finite field theory, residue number and primes theories. The authors offer their own automation model for creating nonlinear pseudorandom sequences with the set periods of L = 2^n-1 and L = 2^n, n >1 with the output function as the nonlinear complication function on the basis of nonlinear mapping of modules belonging to Fermal primes. It has been proved that the automation output function is an injective function that displaces elements of the De Bruijn sequence. It has been demonstrated that the algorithmic model of the automation output function allows to change the structure of  nonlinear sequences by pseudorandomly displacing values of the primitive roots of the Fermal prime. The size of the nonlinear sequence assemble formed by the nonlinear complication function depends on the number of primitive roots and is determined by the lower bound of О(2^n), n>1 type. 


Keywords:

pseudorandom sequence, automaton model, complication function, injective mapping, the De Bruijn sequence, M-sequence, Fermat primes, nonlinear modular operation, primitive roots, ensemble of sequences

Введение

Тема развития, совершенствования моделей и алгоритмов построения генераторов псевдослучайных последовательностей (ПСП) с характеристиками, близкими к случайным последовательностям, постоянно отражается в публикациях. Примерами подобных работ, опубликованных в последние годы, являются [1–18]. Одной из активно исследуемых задач в этом направлении является задача [19,20] усложнения аналитического строения псевдослучайных последовательностей, применяемых для различных приложений (помехозащищенность широкополосных сигналов, защита информации и др.). Распространенный подход усложнения строения формируемой ПСП заключается в применении к элементам заданной исходной ПСП дополнительного преобразования в виде некоторой нелинейной внешней логики (нелинейной функции усложнения (НФУ)) [6, 19-24].В данном подходе выбором исходнойПСП обеспечивается требуемый максимальный период формируемой псевдослучайной последовательности, а необходимое ее качество определяется моделью НФУ.

Важной задачей в отмеченном подходе является построение математических моделей нелинейной функции усложнения, однозначно выполняющей преобразование исходной ПСП и формирующей выходные нелинейные последовательности, обладающие на заданном максимальном периоде статистическими свойствами, приближающимися к свойствам случайной равновероятной последовательности. Этой задаче посвящена, в частности, работа [24], где представлена модель генератора ПСП с нелинейной функцией усложнения, реализующей усложнение ПСП из класса М-последовательностей [7] путем перестановки ее элементов. Перестановка в [24] реализуется на основе модулярной операции возведения в степень по модулю простого числа Ферма. Данная НФУ позволяет менять строение ПСП параметрически - путем замены в модулярной операции значений первообразных корней [25]. Однако период получаемых нелинейных ПСП на модели [24] ограничен величиной модуля, определяемого простым числом Ферма.

Целью работы является определение и алгоритмическое построение математической модели представления нелинейных ПСП на основе модулярной операции возведения в степень по модулю, принадлежащему к множеству простых чисел Ферма, позволяющей получать нелинейные ПСП с заданными перио­дами L = 2n−1 и L = 2n , где n > 1.

1.Постановка задачи

Рассмотрим генератор ПСП в виде конечного автономного автомата с функцией выхода:

(S, Y, , , s0), (1)

где S - конечноемножество состояний; Y - конечное множество выходных букв; : SS - функция переходов; : SY - функция выхода; s0 – начальное состояние. Пусть |S| = |Y|, состояния автомата (1) являются двоичными векторами , выходные буквы являются двоичными векторами . Функция переходов автомата выполняет преобразование вектора Х в вектор Х и реализуется как генератор последовательности де-Брейна с периодом 2n на основе РС с нелинейной функцией обратной связи, определяемой полиномом вида [20]:

, (2)

где F(x) примитивный полином степени n над полем GF(2) = {0, 1}. Полином F(x) задает функцию обратной связи РС, генерирующего M-последовательность с периодом 2n−1. Функция выхода рассматривается как функция усложнения, выполняющая однозначное отображение

Z = (X): G(2)n → G(2)n, (3)

где G(2)n – множество n-мерных двоичных векторов, |G(2)n| = 2n.

Введем следующее нелинейное преобразование - алгоритм возведения в степень по модулю простого числа [25]:

, (4)

где p - простое число, j - целое число, Qh - заданный первообразный корень (примитивный элемент) по модулю p, h = 1, 2, …, (p−1) (число первообразных корней при заданном модуле p равно значению функции Эйлера (p−1)) [25], Qh принимает значения из интервала 1 < Qh < p−1.

Отметим следующие свойства алгоритма (4), вытекающие из свойств первообразных корней по модулю p [25]. Обозначим их символами С1, С2, С3. Введем множества М1 = {1, 2, …, p1}, М2 = {0,1, 2, …, p1}.

Свойство С1 [25]. Пусть в алгоритме (4) переменная jпринимает значения из множества М1 = {1, 2, …, p−1}. Тогда алгоритм (4) выполняет инъективное отображение F1: М1М1 и последовательность значений уj, получаемая по алгоритму (4), имеет период p−1. Отображение F1 есть перестановка, заданная на М1.

Свойство С2 [25]. Пусть в алгоритме (4) переменная j принимает значения из множества М2 ={0,1, 2, …, p-1}. Тогда алгоритм (4) выполняет однозначное отображение, сюръекцию F2: М2М1. В (4) значениям j = 0 и j = p1 сопоставляется значение уj = 1.

Свойство С3 [25]. Пусть в алгоритме (4) переменная jпринимает значения из множества М1. Тогда алгоритм (4) при j = (p−1)/2 и заданном Qh, 1 < Qh < p –1, выполняет соответствие вида j→(влечет) уj = р − 1, т.е.

(5)

Решаемой задачей является построение для автоматной модели (1) нелинейной функции выхода, реализующей инъективное отображение (3), где n – четное, n > 1, на основе алгоритма (4).

2. Анализ задачи, подход к решению

Из свойств С1-С3 следует:

1) для реализации в модели (1) инъективного отображения (3) алгоритмом (4) необходимым условием является выполнение соотношения p > 2n, n > 1;

2) чем больше величина ∆= p − 2n, тем больше отличается по составу и величине элементов множество Y от S при реализации функции выхода .

Введем в рассмотрение следующее множество простых чисел p, при которых величина ∆ имеет минимальное значение, равное ∆ =1: множество МF={р1, р2, р3, р4} простых чисел Ферма (чисел вида р = 2m + 1, где m=2, 4, 8, 16, р1=22+1=5, р2=24+1=17, р3=28+1=257, р4=216+1=65537).

Введем множество М3 = {0, 1, 2, …, 2m−1}, |М3|=2m, m=2, 4, 8, 16.

Рассмотрим решение задачи реализации инъективного отображения вида F3: М3М3 на основе алгоритма (4).

Отметим следующее свойство алгоритма (4).

Утверждение 1. Пусть в алгоритме (4) выполняются следующие условия: модуль рМF, 1 < Qh < p–1, переменная j принимает значения из множества М3, величина 2m = p−1, m = 2, 4, 8, 16. Тогда алгоритм (4) выполняет инъективное отображение вида

F2: М3 М4 = {1, 2, …, 2m-1, 2m},

где представлено соответствие

. (6)

Справедливость утверждения 1 следует из свойств С1, С2, C3.

Отметим: операцию возведения в степень по модулю рМF по выражению (4) можно реализовать путем применения вычислительного алгоритма, представленного в виде [26].

Пример 1. Реализация в соответствии с [26] операции возведения в степень по модулю. Пусть m=4, р2=17, Q1=3.

1) Зададим двоичное текущее значение j. Пусть j =(х0 х1 х2 х3)2=1011.

2) Заполним следующую таблицу

j

х0

х1

х2

х3

Q